摘要
以远离交通环境的公园作为相对清洁区,研究了位于广东佛山种植最普遍的8种城市行道树树黄葛榕(FicusvirensAit.var.sublanceolata(Miq.)Corner),大叶紫薇(Lagerstroemiaspeciosa(L.)Pers.),芒果(MangiferaindicaL.),细叶榕(FicusmicrocarpaL.),阴香(Cinnamomumburmanii(Nees)Bl.),垂叶榕(FicusbenjaminaL.),白兰(MicheliaalbaDC.),红花羊蹄甲(BauhiniablakeanaDunn)在交通密集区生长在不同方位的植物器官对交通环境的响应。结果表明,交通密集区的城市行道树的叶片和树皮器官吸收重金属铅和镉、硫含量、电导率和pH值等指标在不同的方位呈现显著的差别,即城市行道树位于快车道一侧生长的植物的器官(以下简称P1)、位于面向人行道一侧生长的植物的器官(以下简称P2)及相对清洁区采集的植物样品(以下简称P0)各指标测定值的分析结果为:其叶片和树皮硫、重金属铅和镉、电导率等特征值基本呈现P1>P2>P0的大小规律,在显著度为0.05时差异显著;而pH值基本呈现P1<P2<P0的大小规律,在显著度为0.05时差异显著。即离车道越近,城市行道树的器官吸收积累的污染物含量Pb、Cd、S含量越多,电导率越大,pH值越小。以栽植量最普遍的13条路段的黄葛榕样品为例,经测定分析发现,在其各指标中,重金属铅和镉与电导率有显著的正相关性,其相关系数在0.01水平时的相关系数分别为0.8567和0.7228,黄葛榕树皮的电导率指标可作为交通环境复合污染程度的指标之一。不同城市行道树叶片下表皮的气孔对交通环境的响应程度不同,如黄葛榕、细叶榕、垂叶榕、红花羊蹄甲、白兰等行道树种在位于机动车一侧的植物叶片下表皮气孔密度大于面向人行道一侧及对照区的叶片气孔密度;大叶紫薇、芒果、阴香等行道树等位于机动车一侧的叶片下表皮气孔密度小于面向人行道一侧及对照区的叶片下表皮气孔密度。说明不同行道树对交通环境的�
Ficus virens Ait. var, stblanceolata (Miq.) Corner, Lagerstroemia speciosa (L.) Pers. , Mangifera indica L. , Ficus microcarpa L. cinnamomum burmanii (Nees) BL , Ficus benjamina L. Michelia alba DC. , and Bauhinia blakeana (Dunn) are common urban roadside trees in Foshan, Guangdong. They are subjected to many pollutants from automobile emissions, such as SO2 and the heavy metals Pb and Cd. The comparatively pollution-free parks far from the traffic environment were used as a control site to study the responses of urban roadside trees to the traffic environment. The results are as follows: The eight roadside trees differed from park trees in their absorption of the heavy metals Pb and Cd, sulfur content, electric conductivity, pH value in the leaves and bark, and stomatal density. There were three sampling sites: next to the automobile lane (P1), the pavement (P2), and in the comparatively pollution-free parks away from traffic (P0). Pb, Cd, and sulfur content and electric conductivity in the leaves and bark of the urban roadside trees demonstrated significant differences (5%level) following the trend of P1〉P2〉P0. The pH value was also significant (5% level); however, it showed the reverse results: P1〈P2〈P0. That is to say, the nearer the sampling location to the traffic environment, the higher the absorption of Pb, Cd, and sulfur, the higher the electric conductivity, and the lower the pH value in the leaves and bark of urban trees. For example, Ficus virens Ait. var. sublanceolata (Miq.) Corner, the most widely planted tree on 13 streets, demonstrated correlations in leaf and bark content of Pb, Cd, and sulfur, electric conductivity, and pH value. The measured values were analyzed by SAS 8.2. The electric conductivity showed a significant positive correlation with heavy metal (Pb and Cd ) content with a correlation coefficient of 0.8567 and 0. 7228, respectively (1% level). The electric conductivity of Ficus virens Ait. var. sublanceolata (Miq.)
出处
《生态学报》
CAS
CSCD
北大核心
2005年第9期2180-2187,共8页
Acta Ecologica Sinica
基金
国家自然科学基金资助项目(30170147)~~
关键词
城市行道树
重金属铅
镉
硫
电导率
PH值
气孔密度
city roadside trees
heavy metal Pb, Cd
sulfur
electric conductivity
pH value
stomata density