摘要
本文从带约束非协调旋转Q_1元(即CNR元)出发,构造了求解Stokes问题的CNR/分片常数元(即CNR-Q0元),并分析了其稳定性与收敛性。同时应用CNR元求解几乎不可压平面弹性问题,在能量范数与L^2范数意义下得到了与Lame数λ无关的最优误差估计。
In this paper, using the constrained nonconforming rotated Q1 element(CNR hereafter), we propose a CNR/constant element(CNR-Q0 element hereafter) for the Stokes problem and analyze its stability and congergence. Moreover, we apply the CNR element to the nearly incompressible planar elasticity problem, and obtain uniformly optimal error estimates in both energy and L2 norm, which is independent of the Lamé constant λ.
出处
《计算数学》
CSCD
北大核心
2005年第3期311-324,共14页
Mathematica Numerica Sinica