摘要
用齐次平衡原则导出了一个非线性变换,通过该变换Nizhnik方程组化为一个齐2次方程.用Hirota方法可求出齐2 次方程的一列解.将其代入非线性变换,得Nizhnik方程组的多重孤子解.详细分析了二重孤子解.
By using the homogeneous balance principle, a nonlinear transformation of dependent variable is derived,through which the Nizh nick equations are transformed into a single homogeneity equation of 2-degree f or the new dependent variable.The homogeneity equation is solved by using Hirota 's method.Substituting the solutions of the homogeneity equation into the nonlin ear transformation yields the multi-soliton solutions to the Nizhnik equations. The 2-soliton solution is discussed in detail.
出处
《应用数学》
CSCD
北大核心
2005年第2期225-231,共7页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of Henan Province of China(0111050200)
Natural Science Foundation of Education Committee of Henan Province of China(2003110003)
the Science Foundation of Henan University of Science and Technology(2003ZY03)