期刊文献+

Nizhnik方程组的一个非线性变换和多重孤子解(英文) 被引量:4

A Nonlinear Transformation and Multi-Soliton Solutions to the Nizhnik Equations
下载PDF
导出
摘要 用齐次平衡原则导出了一个非线性变换,通过该变换Nizhnik方程组化为一个齐2次方程.用Hirota方法可求出齐2 次方程的一列解.将其代入非线性变换,得Nizhnik方程组的多重孤子解.详细分析了二重孤子解. By using the homogeneous balance principle, a nonlinear transformation of dependent variable is derived,through which the Nizh nick equations are transformed into a single homogeneity equation of 2-degree f or the new dependent variable.The homogeneity equation is solved by using Hirota 's method.Substituting the solutions of the homogeneity equation into the nonlin ear transformation yields the multi-soliton solutions to the Nizhnik equations. The 2-soliton solution is discussed in detail.
出处 《应用数学》 CSCD 北大核心 2005年第2期225-231,共7页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of Henan Province of China(0111050200) Natural Science Foundation of Education Committee of Henan Province of China(2003110003) the Science Foundation of Henan University of Science and Technology(2003ZY03)
关键词 Nizhnik方程组 齐次平衡原则 非线性变换 HIROTA方法 多重弧子解 Nizhnik equations Homogeneous balance principle Nonline ar transformation Hirota's method Multi-soliton solutions
  • 相关文献

参考文献18

  • 1Boiti M, Leon J J P, Manna M, Pempinelli F. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions[J]. Inverse Problems, 1986,2:271 -279. 被引量:1
  • 2Radha R, Lakshmanan M. Singularity analysis and localized coherent structures in ( 2+1 )-dimensional generalized Korteweg-de Vries equations[J]. J. Math. Phys., 1994,35(9);4746-4756. 被引量:1
  • 3Maccari A. Universal and integrable nonlinear evolution systems of equations in 2 + 1 dimensions[J]. J. Math. Phys. ,1997,38(8) :4151-4164. 被引量:1
  • 4Chow K W. Solitoff solutions of nonlinear evolution equations[J].J. Phys. Soc. JPN. , 1996,65(7) : 1971-1976. 被引量:1
  • 5Lou S Y, Hu X B. Infinitely many Lax pairs and symmetry constraints of the KP equation [J]. J. Math.Phys. , 1997 ,38(12): 6401 - 6427. 被引量:1
  • 6Lou S Y,Ruan H Y. Revisitation of the localized excitations of the (2+ 1)-dimensional KdV equation[J].J. Phy. A. Math. Gen. ,2001,34(2) :305-316. 被引量:1
  • 7Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett. A. , 1995,199:169-172. 被引量:1
  • 8Wang M L. Exact solutions for a compound KdV-Burgers equation[J].Phys. Lett. A. , 1996,213:279-287. 被引量:1
  • 9Wang M L o Zhou Y B o Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys. Lett. A. , 1996,216 : 67-75. 被引量:1
  • 10Wang M L, Wang Y M. A new Baeklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients[J]. Phys. Lett. A. , 2001,287 : 211 - 216. 被引量:1

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部