期刊文献+

基于统计方法的数据挖掘算法研究 被引量:6

Study of Data Mining Algorithms Based on Statistical Method
下载PDF
导出
摘要 在统计方法的基础上提出了一种根据数据集合本身的统计特性数据挖掘算法.该算法利用数据本身的统计特性对数据仓库中的数据进行分析,在给定重要性比例程度的前提下,经过系列的统计运算,得到简化的数据仓库集,并根据分析得到了数据挖掘算法的流程图.提出了比例大小关系函数,反映了数据自身的统计特性,分析表明:这种算法极大的提高了数据的有效水平. On the basis of statistical method, this paper put forward one data mining algorithm according to statistics characteristic of the data′s set itself. This algorithm utilizes the statistical characteristic of data to analyze the data in the data warehouse, on the premise of giving definitely degree of proportion of importance, through a series of statistics operation, get the simple data warehouse set, and gained the flow chart of data mining algorithms according to analysis. The paper proposed the relation function of the proportion that reflects the statistical characteristic of data itself. The analysis th9at shows this algorithm has improved greatly the effective level of data.
出处 《湖北民族学院学报(自然科学版)》 CAS 2005年第1期42-44,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 交通部基础研究专项基金项目(20031981408).
关键词 数据仓库 统计特性 数据挖掘 量纲的统一 data warehouse statistical characteristic data mining dimension unification
  • 相关文献

参考文献9

二级参考文献33

  • 1PAWLAK Z. ROUGH set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998,29: 661 - 668 被引量:1
  • 2张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112. 被引量:104
  • 3MartinTHagan 戴葵译.Neural Network Design[M].北京:机械工业出版社,2002.227. 被引量:14
  • 4MANNILA H,TOIVONEN H, INKERI A Verkamo.Efficient algorithms for discovering association rules,Knowledge Discovery in Databases [ A ]. The 1994AAAI Workshop ( KDD' 94 ) [ C ]. Seattle: AAAI Press, 1994. 181 - 192. 被引量:1
  • 5BAYARDO R J. Efficiently mining long patterns from databases[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD'98) [ C]. Seattle:ACM Press, 1998. 85 -93. 被引量:1
  • 6BAYARDO R J, AGRAWAL R, GUNOPULOS D.Constraint-based rule mining on large, dense data sets[A]. Proceedings of 1999 International Conference on Data Engineering ( ICDE' 99) [ C ]. Sydney: IEEE Computer Society Press, 1999. 188 - 197. 被引量:1
  • 7HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation [ A ]. Proceedings of ACM SIGMOD International Conference on Management of Data ( SIGMOD' 2000 ) [ C ], San Diego:ACM Press, 2000. 1 -12. 被引量:1
  • 8AGRAWAL R,SHAFER J C. Parallel mining of association rules [ J ]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6): 962 - 969. 被引量:1
  • 9HAN E H,KARYPIS G,KUMAR V. Scalable parallel data mining for association rules[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD' 97) [ C ]. Tucson: ACM Press, 1997. 277-288. 被引量:1
  • 10AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data ( SIGMOD' 93 )[C]. Washington D C: ACM Press, 1993. 207 -216. 被引量:1

共引文献29

同被引文献40

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部