期刊文献+

一种基于边缘高斯混合模型的运动目标检测方法 被引量:6

Moving Object Detection Based on Edged Mixture Gaussian Models
下载PDF
导出
摘要 针对现有方法在复杂多变环境下不能很好地检测出运动物体的问题,结合图像边缘轮廓信息和自适应高斯混合模型提出了一种新的运动目标提取算法,利用图像边缘信息不随光照的变化而发生突变的特性,对图像边缘进行混合高斯建模,学习背景的边缘信息,从而有效地提取运动目标的轮廓信息。与传统方法相比,提出的运动目标检测方法能更好地适应光线的变化,可有效地提高运动目标检测的准确度。 Learning background statistics is an essential task for several visual surveillance applications such as incident detection and traffic management. In this paper we present an adaptive foreground object extraction algorithm for real-time video surveillance. The proposed algorithm improves the classic Gaussian mixture background models (GMMs) to remove the undesirable subtraction results due to sudden illumination change. This is achieved by replacing the whole image with edge image to build mixture Gaussian model at every frame. Experimental results on real surveillance video are shown to demonstrate the robustness of the proposed algorithm under a variety of different environments with lighting variations.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第S1期72-74,共3页 Journal of System Simulation
基金 北京市属市管高等学校人才强教计划资助PHR(IHLB) 北京市教委面上项目(KM200910009001)
关键词 目标检测 高斯混合模型 边缘检测 光照突变 object detection Gaussian mixture modes edge detection sharp light change
  • 相关文献

参考文献8

二级参考文献25

  • 1曹丽,汪亚明,周维达,黄文清.基于动态图像序列的运动目标检测与跟踪[J].计算机仿真,2006,23(5):194-196. 被引量:7
  • 2刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Kamijo S,Matsushita Y.Traffic monitoring and accident detection at intersections[ A ].In:Proceedings of the 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems[ C ],Tokyo,Japan,1999:70-78. 被引量:1
  • 5Haritaoglu I,Harwood D,Davis L.W4:Real-time surveillance of people and their activities[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):809-830. 被引量:1
  • 6Horn B K,Schunch B G.Determining optical flow[J].Artificial Intelligent,1981,17:185-203. 被引量:1
  • 7Chalidabhongse T H,Kim K,Harwood D,et al.A perturbation method for evaluating background subtraction algorithms[ A ].In:Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance[C],Nice,France,2003,10:11-12. 被引量:1
  • 8Ioannis Pavlidis,Vassilios Morellas,Panagiotis Tsiamyrtzis,et al.Urban surveillance systems:from the laboratory to the commercial world[ A ].In:Proceedings of the IEEE[ C ],2001,89 (10):1478-1497. 被引量:1
  • 9Daniels Hall,Nascimento J,Ribeiro P,et al.Comparison of target detection algorithms using adaptive background models[ A].In:The Second Joint IEEE International workshop on Visual Surveillance and Performance evaluation of Tracking and Surveillance[ C ],Beijing,China,2005,10(15-16):113-120. 被引量:1
  • 10C R Wern, A Azarbayejani, T Darrell and A P Pentland. Pfinder: Real-time tracking of the human body[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785. 被引量:1

共引文献86

同被引文献41

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2李斌,钟润添,王先基,庄镇泉.一种基于递增估计GMM的连续优化算法[J].计算机学报,2007,30(6):979-985. 被引量:9
  • 3Stauffer C,Grimson W E L. Adaptive background mixture models for real-time tracking[ C ]//Proceedings of the 1999 IEEE Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Com- puter Society, 1999:246 - 252. 被引量:1
  • 4Hajar Fradi,Jean-Luc Dugelay. Robust Foreground Segmentation Using improved Gaussion Mixture Model and Optical Flow 1[ C]//lnterna- tional Conference on Informatics, Electronics & Vision (ICIEV), 2012:248 - 253. 被引量:1
  • 5Song Xuehua,Chen Jingzhu,Zhou X. A robust moving objects detection based on improved gaussian mixture model[ C ]//International Confer- ence on Artificial Intelligence and Computational Intelligence, Wash- ington, DC, USA ,2010:54 - 58. 被引量:1
  • 6Luo Jinman. Adaptive gaussian mixture model based on feedback mech- anis-m[ C]//lntemational Conference on Computer Design and Appli- cations ( 1CCD A ), Chengdu, China,2010 : 177 - 181. 被引量:1
  • 7Canny John. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,8 (6) :51 -54. 被引量:1
  • 8M Gupte S, Masoud O, Papanikolopous N P. Detection and classifica- tion of vehicles [ J ]. IEEE Transcation on Intelligent Transportion Sys- tems,2002,3( 1 ) :37 -47. 被引量:1
  • 9Greggio N, Bemardino A, Laschi C. Fast estimation ot Gaussian mixture models for image segmentation[ J I. Ma- chine Vision and Applications,2012 (23) :773-789. 被引量:1
  • 10Kemouche M S, Aout N , Richardson M. Object detection using Gaussian mixture-based optical flow modeling[ J ]. The Image Science Journal ,2013,61:22-34. 被引量:1

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部