摘要
Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophor
Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophor
基金
supported by a Major Project of the Ministry of National Science and Technology of China(Grant No.2014ZX09J14103-09C).