期刊文献+

代价敏感卷积神经网络:一种机械故障数据不平衡分类方法 被引量:23

Cost sensitive convolutional neural network: a classification method for imbalanced data of mechanical fault
下载PDF
导出
摘要 机械设备实际工作过程中正常样本丰富、故障样本匮乏,卷积神经网络在处理这种分布不平衡的数据时对少数类的识别率很低。为解决上述问题,提出一种代价敏感卷积神经网络,首先经过多层卷积和池化运算学习原始监测数据中的机械设备本征性能状态知识;其次通过全连接层将本征性能状态知识映射为机械设备健康状态;最后利用代价敏感损失函数为少数类样本赋予较大的误分类代价,实现对不平衡的机械故障数据的有效分类。为验证所提方法的有效性,使用具有不同不平衡比的刀具数据集和轴承数据集,利用代价敏感卷积神经网络以及主流的分类算法分别测试其对于不平衡数据的分类性能。实验结果表明,所提方法对不平衡数据集中的少数类样本识别率相对于传统卷积神经网络提升了22%以上。 In the actual operation of machinery,the normal data are abundant and the fault data are rare.The recognition rate of the minority class is low when the convolutional neural network is used to process these imbalanced data.To solve this problem,an imbalanced fault diagnosis method for machinery based on the cost sensitive convolutional neural network is proposed.Firstly,the intrinsic performance state knowledge is achieved in raw data of machinery through multi-level convolution and pooling operations.Then,the intrinsic performance state knowledge is mapped to mechanical health by fully connected layer.Finally,the cost sensitive loss function is used to set a large cost to the misclassification of the minority class.The effective classification of mechanical imbalanced data is realized.The proposed method is evaluated by tool monitoring data and bearing monitoring data with different imbalanced ratio.Compared with the traditional convolutional neural networks,experimental results show that the recognition rate of minority samples in imbalanced datasets has been improved by more than 22%.
作者 董勋 郭亮 高宏力 刘宸宇 李磊 Dong Xun;Guo Liang;Gao Hongli;Liu Chenyu;Li Lei(Engineering Research Center of Advanced Driving Energy-saving Technology,Ministry of Education,Southwest Jiaotong University,Chengdu 610031,China;School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第12期205-213,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(VP21ZR1102Y17025,51905452) 中央高校基本科研专项资金(2682017ZDPY09,2682019CX35,2018GF02)项目资助.
关键词 代价敏感 卷积神经网络 不平衡分类 智能故障诊断 cost sensitive convolutional neural network imbalanced classification intelligent fault diagnosis
  • 相关文献

参考文献11

二级参考文献100

  • 1张琳,孙安全,王天一,杨新宇,张学礼.某型导弹装备的故障智能诊断[J].中南大学学报(自然科学版),2013,44(S1):216-220. 被引量:4
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:46
  • 3马扬飚,钟约先,郑聆,袁朝龙.三维数据拼接中编码标志点的设计与检测[J].清华大学学报(自然科学版),2006,46(2):169-171. 被引量:33
  • 4陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 5Rumpf T, R?mer C, Weis M, et al.Sequential support vector machine classification for small-grain weed species discrimination with special regard to cirsium arvense and galium aparine[J].Computers and Electronics in Agriculture, 2012, 80(S): 89-96. 被引量:1
  • 6Arribas J I, Sánchez-Ferrero G V, Ruiz-Ruiz G, et al.Leaf classification in sunflower crops by computer vision and neural networks[J].Computers and Electronics in Agriculture, 2011, 78(1): 9-18. 被引量:1
  • 7R?mer C, Bürling K, Hunsche M, et al.Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines[J].Computers and Electronics in Agriculture, 2011, 79(2): 180-188. 被引量:1
  • 8White D J, Svellingen C, Strachan N J C.Automated measurement of species and length of fish by computer vision[J].Fisheries Research, 2006, 80(2): 203-210. 被引量:1
  • 9Alsmadi M K, Omar K B, Noah S A, et al.Fish recognition based on robust features extraction from size and shape measurements using neural network[J].Journal of Computer Science, 2010, 6(10): 1088-1094. 被引量:1
  • 10Xin Y, Pawlak M, Liao S.Accurate computation of Zernike moments in polar coordinates[J].IEEE Transactions on Image Processing, 2007, 16(2): 581-587. 被引量:1

共引文献830

同被引文献219

引证文献23

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部